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Abstract
Transport properties of high transition temperature (high-Tc) superconductors apparently
demonstrate two distinct relaxation rates in the normal state. We propose that this superficial
inconsistence can be resolved with an effective carrier (quasiparticle) density n almost linear in
temperature T . Experimental evidence both for and against this explanation is analyzed and we
conclude that this offers a clear yet promising scenario. Band structure calculation was utilized
to determine the Fermi surface topology of the cuprate superconductor versus doping. The
results demonstrate that an electron-like portion of the Fermi surface exists in a wide range of
doping levels even for a p-type superconductor, exemplified by La2−x SrxCuO4−δ (LSCO). Such
electron-like segments have also been confirmed in recent photoemission electron spectroscopy.
The Coulomb interaction between electron-like and hole-like quasiparticles then forms a bound
state, similar to that of an exciton. As a result the number of charge carriers upon cooling
temperature is decreased. A quantum mechanical calculation of scattering cross section
demonstrates that a T 2 relaxation rate is born out of an electron–hole collision process. Above
the pseudogap temperature T ∗ the normal state of high-Tc cuprates is close to a two-component
Fermi liquid. It, however, assumes non-Fermi-liquid behavior below T ∗.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The peculiar normal-state transport properties of high-
Tc superconductors are rather controversial and not well
understood. The most striking of these is the observation of
the so-called two relaxation rates [1]. The resistivity ρ is
linear in temperature T for optimally doped samples [2], which
implies a transport (longitudinal) relaxation rate 1/τtr ∝ T
from ρ = mc/ne2

cτtr assuming that ec, mc and n, respectively
the charge, mass and density of carriers, are T -independent.
In contrast, the Hall (transverse) relaxation rate 1/τH from
the cotangent of the Hall angle cot θH = mcc/ec H τH is
essentially quadratic in T . These two distinct T dependences
have various explanations. A widely known one is due to
Anderson, based on the spin–charge separation scenario of the
Luttinger liquid [1]. Other interesting schemes include, but are
not limited to, the near-antiferromagnetic Fermi liquid (NAFL)
theory of Pines et al [3] and marginal Fermi liquid (MFL)
theory by Varma et al [4], to name a few.

We are here to point out that the two distinct rates might
be superficial if the effective carrier density (concentration)
n actually depends on T or n = n(T ). Especially if the
n(T ) ∝ T , then we are left with perhaps only one rate, for
both longitudinal and transverse processes. This is easy to see
because 1/τtr = n(T )e2

cρ/mc (in Gaussian units) and as long
as n(T ) ∝ T and ρ ∝ T we then get 1/τtr ∝ T 2. It has
therefore the same T dependence as 1/τH from the Hall effect.

Similar explanations have been proposed before [5–7].
Alexandrov and Mott also suggest n(T ) ∝ T although
their carriers are bosons (bipolarons) [8, 9]. Levin and
Quader [10] advocate a model where non-degenerate and
degenerate carriers possess two different relaxation rates. The
density of the non-degenerate carriers is determined by various
thermal activation processes. Therefore the overall carrier
density is T -dependent, albeit not necessarily linear in T .
More recently, a similar model was studied in detail by
Gor’kov and Teitel’baum [11, 12] and the authors specifically
attributed the T -dependent component to exciton-like bound
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Figure 1. (a) Resistivity ρ (ρ33) and Hall coefficient RH (R231)
versus T in Bi after [14]. (b) cot θH versus T 2.5 calculated from ρ33

and RH (R231). (c) Concentration for both electron and hole versus T .
(d) Magnetoresistance �ρ (A33) versus T .

states, in a striking similarity to the scheme proposed here.
This notion of a variable n, however, does not come without
some (often superficial) difficulties. For example, optical
conductivity seems to suggest that spectral weight of the Drude
part is independent of T [13–15], implying a constant n.
Nevertheless, we will show later that such an evidence is
oversimplified.

2. Relaxation rates in transport

Although the discrepancy between ρ ∝ T and cot θH ∝ T 2

is often treated as abnormal in the high-Tc world, similar
behaviors happen elsewhere, typically in some semi-yet
traditional metals, where a single relaxation rate dominates
transports. Therefore, such a discrepancy is not limited to
cuprates. One question is naturally raised, that is, do ρ ∝ T
and cot θH ∝ T 2 really indicate two relaxation rates? A
number of theories exist but a general consensus is not reached
yet. Nevertheless recent and refined experiments seem to
indicate a single rate, as we will discuss later.

2.1. Relaxation rate in semimetals

Bismuth displays a similar discrepancy from 77 to 300 K as
shown in figures 1(a) and (b), although with a cot(θH) ∝ T 2.5

instead [16]1. This behavior has long been understood from
a single rate 1/τ ∝ T 2.5 and a variable n(T ) ∝ T 1.5 (see
figure 1(c)), which in combination give a ρ ∝ T . It is very
unlikely that a Luttinger liquid theory is relevant to a three-
dimensional conductor, to which Bi belongs. Then, taking such
a discrepancy as the evidence for spin–charge separation does
not seem to be convincing.

1 Michenaud confirmed to the author that tick mark labels for the vertical axis
of figure 2 should be 10−7, 10−8 and 10−9 downwards. Data are from table 2.

With a much lower n (∼1017 cm−3), the semimetal Bi still
has a lower resistivity than most cuprates in their normal states,
which are often treated as metals. This raises the question
of whether doped cuprate is a metal, a semimetal or even a
semiconductor, as suggested by Alexandrov and Mott [9, 17].
We believe that it has characters of all three. It is like a metal
or semimetal as required by a non-zero n when approaching
0 K. On the other hand, significant electrostatic field effects on
the transport [18], the divergent 0 K resistance under a strong
magnetic field [19] and the likely variable n from the Hall
effect [20] put it near semiconductors and semimetals, quite
far from a simple metal2 where n is taken as fixed.

2.2. The case of cuprates

Let us go back to other evidence supporting the n(T ) ∝ T
argument. First and foremost is actually the Hall coefficient
RH itself. Within the temperature range where cot θH ∝ T 2, RH

can be nicely fitted by 1/(a0 + a1T ) in optimally doped (OD)
p-type cuprates [20]. Such a fit is even upheld in recent infrared
Hall experiments at a high energy scale of ≈0.1 eV [21]. Note
that RH = 1/necc or equivalently 1/eccRH measures n in
a simple parabolic band. However, a naive explanation of
n = 1/eccRH seems not prudent because RH may reach 0 in
some cuprates. This is perhaps why the T -dependent RH is
not widely accepted as evidence for n(T ) ∝ T . However,
RH = 0 can be understood with a two-carrier model as a
result of compensation [23–27]. And as long as one carrier
dominates the transport, RH is still ∝1/n although eccRH =
1/n no longer holds. To see this, suppose that the densities of
two carriers are given respectively by ne = ne0 + ne1T and
nh = nh0 + nh1T , giving rise to a Hall coefficient

RH = nh − neb2

ecc(nh + neb)2

= (nh0 − ne0b2) + (nh1 − ne1b2)T

ecc[(nh0 + ne0b) + (nh1 + ne1b)T ]2
,

where b = μe/μh is the mobility ratio. If ne1T � ne0,
nh1T � nh0 and nh1 − ne1b2 �= 0, RH is roughly ∝1/T . Thus
the Hall effect strongly suggests n(T ) ∝ T in the normal state
of OD p-type cuprates3.

RH is arguably the most widely used and quite accurate
method to determine n in metals and semiconductors when
compensation is not severe. It is not persuasive to treat one-half
of the Hall effect, say cot θH ∝ T 2 as exact, while disregarding
the physical meaning of the other half, namely RH ∝ 1/T ,
for cot θH = mcc/ec H τH itself holds strictly only for a simple
parabolic band, just as RH = 1/necc. Actually, putting these
two facts on an equal footing makes the physics compact and
concise: there roughly exists a relaxation rate 1/τ ∝ T 2,
governing both longitudinal and transverse processes. ρ =
mc/n(T )e2

cτtr ∝ T is the result of 1/τtr ≈ 1/τ ∝ T 2 and
n(T ) ∝ T , while cot θH = mcc/ec H τH has no n(T ) in it, thus

2 n from RH is nearly constant for group IA metals like Na, K and noble
metals (100 K < T < 350 K, where ρ ∝ T ). n may vary even for some metals
like Al, because of its sizable RH dependence on T . Certainly the variation in
RH cannot come from n only. See, for example, [22].
3 It is better to write n(T ) = a + bT instead of n(T ) ∝ T . We, however,
generally neglect the difference in two such notations for the sake of simplicity.

2



J. Phys.: Condens. Matter 21 (2009) 025701 N Luo and G H Miley

cot θH ∝ 1/τH ≈ 1/τ ∝ T 2. (We assume that mc is relatively
T -independent and this issue will be addressed later.) With a
non-fixed n, we can proceed to see that the apparent violation
of Kohler’s rule [28] is actually superficial.

2.2.1. Kohler’s rule. Kohler’s rule in its ordinary form states
that the relative magnetoresistance �ρ/ρ0 in a magnetic field
H can be represented in the form [29]

�ρ/ρ0 = F(H/ρ0), (1)

where ρ0 is the resistivity at H = 0 and F is a function given
by the metal and its sample geometry only.

In cuprates, approximately [28] �ρ/ρ0 ∝ H 2T −4 but
H/ρ0 ∝ H T−1. Because �ρ/ρ0 (or H 2T −4) is not a function
of H/ρ0 (or H T −1) only, Kohler’s rule seems to be violated.

The argument above is, however, not valid if carrier (or
alternatively referred to as quasiparticle) density n is not fixed.
A scrutiny of its derivation [29] shows that a more general form
of Kohler’s rule is

�ρ/ρ0 = F(H τ ), (2)

where τ is the single relaxation time assumed for that
conductor. For simple metals, n is roughly a constant, so
that τ has the same T dependence as ρ0 and thus there is no
problem if one writes �ρ/ρ0 = F(H/ρ0) instead of F(H τ ).
However, for cuprates, n likely depends on T , so we should use
equation (2) instead of equation (1) in order to see if Kohler’s
rule survives. Because H τ ∝ H T −2, where 1/τ is the single
rate assumed, we have �ρ/ρ0 ∝ H 2T −4 = (H T −2)2 and thus
�ρ/ρ0 ∝ (H τ )2 = F(H τ ) so that Kohler’s rule still holds.
Similarly in Bi, �ρ/ρ0 ∝ H 2T −5 = (H T −2.5)2 inferred from
figure 1(d) and so we get �ρ/ρ0 ∝ (H τ )2 = F(H τ ) because
1/τ ∝ T 2.5 here in Bi. Kohler’s rule is not violated either.
A thorough derivation and analysis was given by the authors
elsewhere [30].

The perseverance of Kohler’s rule barely strengthens
the idea of a single rate 1/τ ∝ T 2. Thus our previous
explanation of the Hall effect seems to be in the right direction.
Angle-resolved photoemission spectroscopy (ARPES) studies
also suggest the applicability of semimetal band structure to
cuprates. Figure 2 shows some likely scenarios how this might
be materialized in Bi-2212 with the two-dimensional Fermi
surface (FS) mapping following [28]. The discussion can be
generalized to other p-type superconductors. Note that the
discussion here represents the FS understanding of some seven
years ago, but is nevertheless published here to serve as a
historical perspective. More recent studies have improved our
understanding and answered some puzzling questions outlined
in figure 2. These will be discussed in the later part of the
paper.

2.2.2. Mid-infrared. Having mentioned some evidence for
the single-rate explanation, we now discuss experiments still at
odds with it. The apparently most serious one, in our opinion,
is from the optical conductivity σ(ω). To account for the non-
Drude behavior of σ(ω) in cuprates, a classical two-component
model [32] is used in quite a few studies:

σ(ω, T ) = σD(ω, T ) + σMIR(ω, T ), (3)

Figure 2. 2D Fermi surface and band structure scenarios of generic
cuprate superconductors from ARPES. (a) FS due to split from two
CuO2 planes. (b) Hole-like FS shared by all cuprates. (c) Hole-like
FS with electron-like states shown as the shaded area. (d)–(f) Band
structures near FS along Y–M̄–	 for cases shown in (a)–(c)
(see footnote 3). Dotted lines along M̄–	 in (d) and (e) indicate
hypothesized band dispersion which stabilizes local minimum at M̄.
(g) The lower band of (d) unfolded along Y–M̄–X in the left panel.
The band is electron-like near M̄ along Y–M̄–X. (h) Band of (e)
unfolded along Y–M̄–X in the left panel, electron-like.
(i) Electron-like states near M̄ in the left panel. The right panels of
(g)–(i) show hole-like band dispersion near (π/2, π/2) along Cut A,
indicated by dashed–dotted lines in (a)–(c). The possible
complication in hole-like bands from the bilayer splitting near
(π/2, π/2) as in (a) is neglected. EF is the Fermi level in all cases.
The Brillouin zone notation is that often adopted for Bi-22(n − 1)n
systems. With slight modification, the pictures depicted here can be
adopted for superconductors of space group I4/mmm , such as
La2−x Srx CuO4−δ .

where σD(ω, T ) = [n(T )e2
c/mc]{(1/τ)/[ω2 + (1/τ)2]} is the

T -dependent Drude part while σMIR(ω, T ) is the nearlyT -
independent mid-infrared (MIR) part. The spectral weight of
the Drude part,

∫ ∞
0 σD(ω, T ) dω, is found to be independent of

T (the shape of σD(ω, T ) is T -dependent though), suggesting
a constant n if mc is taken independent of T . Nonetheless the
typical use of such a model is oversimplified. The problem is:
the MIR is treated as T -independent and modeled as classical
Lorentz oscillators.

The T dependence of MIR is tied to its nature. MIR is
often understood as an interband electronic transition [33, 34].
This interband transition, especially at its low ω part,
is, however, not from excitation over the charge-transfer
(CT) gap. Rather, it perhaps comes from doping-related
states and spectral weight transfers inside the CT gap
as suggested by various doping-dependent photoemission,
inverse photoemission, x-ray absorption, electron-energy-loss
spectroscopy and IR reflectance studies [35, 34]. Without
lingering over the exact origin of these MIR-related states, we
have two observations from experiments. First, MIR states
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Figure 3. Spectral weight transfer between the Drude and MIR parts
of optical conductivity σ(ω, T ) in cuprates. (a) Theoretical variation
of σMIR(ω, T ) with T in a quantum model. (b) The σ(ω) as found at
20 K. (c) σ(ω) at ∼100 K. The dashed line is the σMIR(ω, T )
assumed in the typical two-component analysis, which is the same as
σMIR(ω) at 20 K. The dotted line is the calculated σD(ω) by using
σ(ω, 100 K) − σMIR(ω, 20 K). (a)–(c) share the same horizontal
axis. (d) σ(ω) at ∼100 K. The thick dashed line is the actual
σMIR(ω) at 100 K as shown in (a) as the long dashed line. The
dashed–dotted line is the actual σD(ω) at 100 K by using
σ(ω, 100 K) − σMIR(ω, 100 K). The thin dashed and dotted lines are
the same as those in (c) for comparison. Obviously the Drude weight
obtained in (d) is larger than that in (c), which means an higher
carrier density at 100 K compared with 20 K. The shaded area is the
spectral weight transferred away from MIR as indicated by the arrow
when T reaches 100 from 20 K. (e) σ(ω) at ∼300 K. The spectral
weight of MIR is further transferred to the Drude part.

are very close to the Fermi level, manifested by a low energy
MIR tail approaching ω = 0.4 Such states might relate to
the flat band, van Hove singularity and electron-like states
(see figures 2(c) and (f)) revealed in ARPES. Second, MIR
states are localized at low T as seen in σ(ω) at 20 K or
lower [13, 14] as shown in figure 3(b), because otherwise it
would behave Drude-like and there would not be an MIR at all.
Then the interband transitions of MIR are likely from shallow
localized states to extended ones. Later we will show how
strong correlation combined with the peculiar band structure
of cuprates might contribute to the localized state.

With these two properties of MIR states, σMIR should be
T -dependent in its low ω part (actually in the far-infrared,
FIR), because higher T should progressively set more carriers
free, which corresponds to a spectral weight transfer from
MIR (or FIR) to the Drude part, as indicated by the arrow
in figure 3(d). In other words, the classical model of Lorentz
oscillator with a T -independent MIR is not correct considering
the quantum nature of interband excitations. With increasing
T , there should be a reduction in the spectral weight of MIR as
shown in figure 3(a), and this reduction in MIR should then

4 The low energy tail of MIR often extends down to ∼100 cm−1, and
sometimes extrapolates to ω ≈ 0.

be made up by an increase in the Drude part (figure 3(d))
according to the sum rule (i.e. a spectral weight transfer).
Such weight reduction [36] and weight transfer [37] have been
understood in optical studies of narrow-gap semiconductors
like HgTe, Hg1−x Cdx Te and semimetals such as Bi. Unlike
the valence-to-conduction-band type of transition there (	8 →
	8 in HgTe, Hg1−xCdxTe and possibly crossing the L-point
gap in Bi), the MIR in cuprates are likely from localized to
extended bands, but a similar T dependence should still hold.
However, being overlapped σD and σMIR in cuprates have no
clear-cut method to separate. (Overlap of the two parts in
Hg1−xCdx Te and Bi is not as severe.) So what is often used
in analysis is assuming that the σMIR at 20 K or lower, written
indiscriminately as σMIR(ω, 20 K) for simplicity, be the same
for all other T [13, 14]. Such a procedure, without little doubt,
would make a constant Drude weight simply because of the
conductivity sum rule.

Rewrite equation (3) as

σD(ω, T ) = σ(ω, T ) − σMIR(ω, T ). (4)

Integrate both sides over ω from 0 to ∞, and by using a sum
rule for σD(ω, T ), we get

πn(T )e2
c

2mc
=

∫ ∞

0
σ(ω, T ) dω −

∫ ∞

0
σMIR(ω, T ) dω, (5)

where the total weight
∫ ∞

0 σ(ω, T ) dω of the two parts
basically measures the number of states available within the CT
gap5. It is directly integrated from experimental σ(ω, T ) and
is found independent of T . If a σMIR(ω, T ) = σMIR(ω, 20 K)

is assumed for all T , as is done in a typical T -dependent two-
component analysis [13, 14], we are left with

n(T ) = 2mc

πe2
c

[∫ ∞

0
σ(ω, T ) dω −

∫ ∞

0
σMIR(ω, 20 K) dω

]

.

(6)
Because

∫ ∞
0 σMIR(ω, 20 K) dω is a constant, the right-

hand side of equation (6) is T -invariant, and we are left
with an effective carrier density n ∝ ∫ ∞

0 σ(ω, T ) dω −∫ ∞
0 σMIR(ω, 20 K) dω, which is independent of T even if n

changes with temperature in reality. The introduction of self-
consistent iteration [14] marginally improves the result but
qualitatively it would not cure the problem. There are different
approaches using straightforward least-squares fit [14, 15].
However, with a classical and oversimplified Drude–Lorentz
model to start from, such fits are not likely to uncover the
sizable T dependence of the Drude weight.

Meanwhile the high ω part of MIR is less affected by T ,
as easily understood from quantum statistics and because the
MIR is several times larger than the Drude part, a spectral
transfer of the order of one Drude weight does not contradict
the convention of nearly T -independent MIR. The transfer only
occurs at low ω where the overlap with the Drude peak makes
its detection hard.

The analysis above explains the origin of variable n as
well: as T increases, previously localized carriers are now

5 Here σ(ω, T ) in our notation is that from MIR and Drude only.
Experimentally, this means a cutoff at ω beyond the CT gap.
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set free and we are likely left with an n ∝ T . Actually this
variable n finds a common point in the one-component model
of σ(ω, T ) [38], where renormalized relaxation rate 1/τ ∗ and
renormalized mass m∗

c both depend on T and ω. In other words

σ(ω, T ) = ne2
c

m∗
c(ω, T )

1/τ ∗(ω, T )

ω2 + [1/τ ∗(ω, T )]2
, (7)

where n is, however, taken as fixed. In a typical result of
this model [39], the renormalized mass m∗

c (ω, T ) at low ω,
say 200 cm−1, decreases with increasing T as m∗

c(ω, T ) =
mc0a0/(a0 + a1T ) with mc0 the m∗

c at low T while the
renormalized rate 1/τ ∗(ω, T ) at low ω roughly increases as
T 2. This behavior is perhaps equivalent to an alternative
combination of low frequency n(ω, T ) ∝ (a0 + a1T )/a0 and
1/τ ∗(ω, T ) ∝ T 2 if the mass mc is taken as fixed instead.
Mathematically, by inserting m∗

c(ω, T ) = mc0a0/(a0 + a1T )

in equation (7), we have

σ(ω, T ) = ne2
c

mc0a0/(a0 + a1T )

1/τ ∗(ω, T )

ω2 + [1/τ ∗(ω, T )]2
(8)

= n[(a0 + a1T )/a0]e2
c

mc0

1/τ ∗(ω, T )

ω2 + [1/τ ∗(ω, T )]2
. (9)

If we treat mass mc0 as fixed, then n(a0 + a1T )/a0 can be
taken as an effective carrier density which is linear in T , and we
arrive at the same conclusion as we made earlier. There must
exist renormalization effects to some extent, but meanwhile
we cannot rule out the variation of n with T . The problem
is, however, that the current optical technique is not able to
differentiate one effect from the other because mc and n are
entangled together in the expression of optical conductivity.

Electronic specific heat Cel seems to suggest a fixed n
because γ = Cel/T is a constant above Tc [40]. Localized
states, as long as they are not far from the Fermi surface
(∼kT ), nevertheless contribute to γ because these carriers
may increase their energy and jump to extended states simply
by thermal excitation. Classically this is interpreted as,
while being localized and deprived of translational degrees
of freedom (DOF), they nevertheless have oscillatory DOF.
Thus these states still contribute a term ∝T to Cel, such
that significant variation in γ /T is not seen. Furthermore,
if the states localized are the bound pairs of electron and
hole, the pairs as a whole still enjoy a translational degree of
freedom and therefore contribute to the specific heat. There are
recent reports claiming a scattering rate linear in T shown by
ARPES [41, 42]. However, we need to apply caution on the
meaning of such a rate and its relation to the actual transport
relaxation rate. Averaging to more than 0.2 eV at 300 K [42],
such a rate is far above 1/τtr of 300–500 cm−1 given by
current IR transport studies. On the other hand, recent dynamic
conductivity experiments showed that the T dependence of the
transport rate is much faster than T [43], although not really
up to a T 2 relation. The THz technique adopted is in principle
a much finer probe than ARPES in energy resolution [43],
and more importantly, it directly measures the longitudinal
transport rate. Similar results are obtained in dynamic optical
conductivity experiments [44] at temperatures higher than Tc.
The nearly T 2 rate revealed in the THz and dynamic optical
experiments could well be the single rate we proposed in this
paper.

3. The cause of MIR

A natural question arises as to what contributes to the
MIR/midgap (and somehow localized) states. Here we suggest
a scenario based on exciton-like interactions. Before delving
into details, first we need to clarify the terminology. The
term ‘exciton’, by the usual definition [45], refers to the bound
state of an electron–hole pair. It has traditionally been mostly
studied in a number of semiconductors since it is convenient to
utilize spectroscopic techniques for semiconductor band edges.
The electron–hole bound state in a semiconductor is therefore
of an excitation nature and short-lived as a consequence. In
a semimetal, there are both electrons and holes even in the
ground state. The Coulomb interaction between an electron
and a hole tends to bind the two into a bound state too. This
electron–hole bound state, if formed (by overcoming, say,
screening effects), can be naturally referred to as an ‘exciton’
as well, in the sense of a Coulomb bound state for the electron–
hole pair. However, we should keep in mind the semimetal
‘exciton’ is by no means an excitation of the system. Rather it
is a ground-state phenomenon.

In the so-called excitonic pairing model of superconduc-
tivity, the term ‘excitonic’ refers to a charge-transfer type ex-
citation that gives rise to an effective pairing interaction in the
earliest Little model. The later models [46, 47] tend to go fur-
ther, and specifically utilize an excited virtual exciton as the
intermediate boson, giving rise to the pairing. Therefore, we
should understand that the term ‘excitonic’ in the case of var-
ious superconductivity pairing models typically implies two
things: excitation and a Coulomb bound state as in a semi-
conductor exciton.

Here in this paper, we refer to our model as exciton-
like. The term ‘exciton-like’ is adopted in the strict sense
of an electron–hole Coulomb bound state. It should not be
understood as implying any excitation from the ground state.
The semimetal-like band structure of most high-Tc cuprates
also rules out the need for an excitation in order to form a
Coulomb bound state. This notion can be further understood
later when we discuss the stability of the exciton-like bound
state in cuprates.

We propose that the peculiar band structure and FS
topology near the optimal doping regime, combined with
strong Coulomb correlation, contribute to the MIR/midgap
states. First, there is strong evidence [24] that electron-
and hole-like charge carriers coexist in a broad range of
superconducting cuprates, including both the nominally n- and
p-type. This is a fact probably best born out of recent ARPES
experiments [48, 49], and is readily understood from the three-
dimensional (3D) Fermi surface topology. For example, to the
most rudimentary approximation, LSCO is a hole conductor
with a hole-like (h-like) Fermi pocket centered around (π, π).
However, such a notion, at the very minimum, neglects the kz

dispersion of the energy band and the associated FS surface
topological change. Although the band dispersion along kz

is weak, of the order of 0.1 eV at most, its effect on the
FS topology is not trivial [50]. Aggravating the problem is
that the ARPES technique currently developed for cuprates is
not kz-sensitive. This contributes to the once much-debated
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issue as to whether some salient features represent electron-
like (e-like) FS or not [23, 24, 31, 51]. Fortunately, the
situation is much clearer now due to much improved ARPES
techniques and computational software. Earlier objections [51]
to electron-like FS have now shifted to an acknowledgment that
such a FS topology exists in a variety of the supposed p-type
superconductors [48, 49], at least for certain doping levels.

One commonly asked question is how to reconcile
the exciton-like picture proposed here with the well-known
antiferromagnetic (AF) correlation existing in the cuprate
superconductors. The authors believe that the two pictures do
not contradict each other. Rather, they are two facets of the
same coin and there should exist causal relationships. It is
widely accepted that magnetism is the result of the Coulomb
interaction and the Pauli principle. The AF fluctuation is
the manifestation of the interaction and the Pauli exclusion
in the spin degree of freedom (DOF), while the exciton-like
bound state is that in the charge DOF. Both are the results of
strong correlations. The Coulomb bound state, for example,
is a non-perturbative property and cannot be described by the
perturbative expansion of a Coulomb interaction matrix in the
form of Feynman diagrams. It is a natural result of strong
correlations.

In parallel to the MIR is the widely known pseudogap.
There are still many conflicted views on its origin. We
believe that a successful theory should be general enough so
as to understand all of the above phenomena in a common
framework. The interaction between electron-like and hole-
like quasiparticles is logical to address such issues.

Electrons and holes attract one another to form weakly
bound Mott–Wannier (MW) excitons [45] due to Coulomb
interaction. Like that in positronium, the binding energy
Eb = e4

c Mμ/32π2ε2
0ε

2
r h̄2 with Mμ the reduced mass and ε0

the vacuum permittivity. The mass of these quasiparticles is
of the order of a few m, or the rest mass of a bare electron.
In YBa2Cu3O7 (YBCO or Y-123), for example, the carrier (e
or h) mass mc ≈ 2m. [54] The relative dielectric constant
εr ≈ 14.7 and thus Eb ≈ 0.063 eV ≈ 730 K in T [55].
The pseudogap T ∗ for insulating Y-123 is not known to the
author but, for LSCO, T ∗ → 720 K when the metal–insulator
boundary is approached [56]. The good match suggests a
possible connection between the exciton-like interaction and
a range of puzzling phenomena in cuprate physics.

A common question in the exciton-like scenario is if such
a structure is stable against recombination. The lifetime of the
often-cited interband (or band edge) exciton in semiconductor
physics is much less than one microsecond. The viability of
exciton-like bound states in a superconductor therefore might
be questioned. We explain that such a concern is not necessary.

3.1. Stability of exciton-like states

Whether electrons (e) and holes (h) should recombine or not
depends on the band structure. In semimetals, Bi, As or Sb, for
example, e and h coexist without annihilating one another. The
reason is as follows and is shown in figure 4.

In typical semiconductors, the conduction and valence
bands are separated by a positive energy gap as shown in

Figure 4. Stability of electron–hole pairs. (a) Typical band structure
for semiconductors. Electron states have higher energy than hole
states and hence electrons recombine with holes in short time.
(b) and (c) Band structure of semimetals. Electron states have lower
energy than hole states and the recombination of electrons and holes
is unfavored in energy. EF is the Fermi energy.

figure 4(a). By jumping from the conduction to the valence
band which is at a lower energy (i.e. recombining with a hole),
the thermally excited electron lowers its energy. This process
thus occurs spontaneously and annihilates the e–h pair. For
semimetals with band configurations typified in figures 4(b)
and (c), the situation is, however, totally different. If the
electron were to jump to the hole state as indicated by the
arrows, it would have to take extra energy. This process is
clearly unfavored energetically. Such a mechanism secures the
stability of the electron–hole liquid against recombination in
semimetals. Cuprate superconductors are in a situation similar
to semimetals in terms of stability against e–h annihilation.
For a superconductor of a single CuO2 layer, there is a only
a single band crossing the Fermi energy. Even in this case, the
FS behaves differently (e-or h-like) in its different portions, as
we will show in section 3.2.

3.2. Band structure and FS

To better understand the FS topology, one needs to resort to
electronic structure calculation. There have been numerous
band structure studies for cuprates. Here we focus on the 3D
Fermi surface topology. To the best of the author’s knowledge,
previous studies largely were on the two-dimensional aspect of
FS. For the sake of simplicity, only LSCO will be worked out
as an example. The author has explored similar systems such as
Nd2−xCex CuO4 (NCCO as e-doped), Bi-2201 and 2212, with
characteristically similar results. These studies will appear
elsewhere in a separate publication.

Before a detailed discussion on the computational
parameters, we need to justify the local density approximation
(LDA) approach utilized in the study. It is well known that the
LDA band calculation fails to reach the correct ground state
for undoped La2CuO4. However, once the LSCO is doped
beyond the metal–insulator transition [57] (sometimes also
called the superconductor–insulator transition, or SIT) point
near x ≈ 0.05, the LDA description of the electronic structure
starts to agree reasonably with that of ARPES, as far as the
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Figure 5. Fermi surface evolution of La2−x Srx CuO4−δ versus
decreasing doping level. (a) A theoretical doping of x ≈ 0.4;
(b) x ≈ 0.3; (c) x ≈ 0.25; (d) x ≈ 0.16; (e) x ≈ 0.1. Green (or the
side facing the BZ boundary) indicates the higher energy side of the
Fermi surface. Graphs on the left are head-on views from the kz

direction. The three-dimensional views are tilted in different cases to
give the best viewing angle. The slight change in the size of the BZ is
due to graphic sizing variation.

low energy physics is concerned, such as the electronic states
near the Fermi surface. For example, figures 2(a) and (b)
of [50] have shown how closely the LDA calculation and
the experiment are matched for a fairly underdoped x =
0.06. Higher doping tends to give better agreement due to the
increasing suppression in the correlation strength, which is also
demonstrated in the other parts of figures 1 and 2 in [50]. What
we focus on in this paper is the energy scale of up to 0.1 eV
within the Fermi energy for doping level x � 0.1 and therefore
the LDA and its variations are a good approximation.

The band structure was studied with a first-principles elec-
tron structure package [52] utilizing a linearized augmented

Figure 6. Close-up of the Fermi surface of La2−x Srx CuO4−δ at
x ∼ 0.20. Small necks, 8 in total, open up in the otherwise
electron-like portion of FS. These are located on the BZ boundary
near (π, 0, π

2 ) or the equivalent, forming a partly electron-like and
partly hole-like Fermi surface. Such a Fermi surface feature
corresponds to an energy band straddling the Fermi level near a
three-dimensional saddle point. In the extended reciprocal space,
such features form the so-called ‘jungle gym’.

plane wave (LAPW) basis set. The many-body correlation
problem is treated within the framework of local density ap-
proximation. Correction due to electron density gradient
abides by the general gradient approximation rules and the
functional used was that of Perdew–Burke–Ernzerhof. Calcu-
lation was carried over 2000 k-points in the first Brillouin zone
to ensure a high precision in the resulting band structure and
Fermi energy. The k vectors were sorted out by their Fermi
crossing and plotted in 3D [53].

At a very high but theoretical doping of x ≈ 0.4 the FS
is a mainly an electron tube centered around (π, π). There are
portions of the FS that possess some hole-like character, but the
absolute portion is very small. With the doping x decreased to
∼0.3, the FS section near the basal plane of the first Brillouin
zone (BZ) and along the (π, π) direction becomes more h-like.
When x is reduced to less than ∼0.17, there is a topological
change in the FS: a tube or a neck opens up at the BZ boundary,
roughly midway between the two planes kz = 0 and π .
The detail of the FS at the topological crossover is shown in
figure 6.

Figure 5 gives an illustrative explanation as regards to the
earlier hesitation in accepting an electron-like Fermi surface
in nominally p-type cuprates. At the optimal doping, the
Fermi surface is still very hole-like. Previous research tends
to focus on 2D segments of FS due to the lack of 3D rendering
capability. Schemes depicted in figures 2(a)–(c), and in fact
many similar discussions in the literature, actually are built
upon a questionable assumption of kz independence of the
Fermi surface. The calculation in figure 5 clearly demonstrates
that this is a oversimplification, and often leads to qualitatively
false conclusions. Take figure 5(c) for example: the Fermi
segment at kz = 0 is already largely hole-like while that at
kz = π is still mostly electron-like.
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The ARPES techniques that have been developed for high-
Tc research are not very sensitive in kz . As a result, what
we have seen for the supposed Fermi surface is merely its
2D projection along the kz direction. The kz dependence
of the FS near (π/2, π/2) is negligible. The ARPES FS is
therefore strong and unambiguously hole-like near (π/2, π/2).
The situation is complicated at (π, 0) due to the relatively
strong kz dependence near the Fermi level. As a result, the
ARPES response there is smeared out, forming the often-
seen ‘shaded’ region around (π/2, 0), which is interpreted as
some sort of unknown state, as that in figure 2(c). Of course,
strong correlation further complicates the ARPES spectra, but
the long neglected kz dependence of FS is now becoming
recognized.

The near-coincidence of optimal Tc and the topological
change demonstrated in figures 5 and 6 does not appear
accidental. Actually, if one believes that strong correlations
between electron- and hole-like quasiparticles play a role in
the superconductivity (SC) mechanism, the coincidence is a
logical consequence.

Still, we need prudence so as not to over-generalize.
A typical counterpoint is that the neck-like structure exists
in ordinary metals, for example copper, yet copper is not
superconducting. Possible reasons are as follows. First,
too many charge carriers typically reduce the correlation.
The Wigner–Seitz radius rs, which defines the ratio of
potential over kinetic energy, scales as n− 1

2 (2D) or n− 1
3

(3D). Meanwhile the Coulomb screening increases with charge
density n. When the Thomas–Fermi screening strength
qtf ∝ (ne2/Ef)

1/2 is on par with the reciprocal inter-particle
distance (roughly given by 1/rs), superconductivity tends to
disappear. This is actually the general behavior of cuprate
superconductors, which lose SC when over-doped. Secondly,
the necked FS portion in copper is relatively small compared
to the free-electron-like spherical part. To enforce an effective
coupling between electrons and holes, the numerical ratio
between unlike charges is advantageous near 2–4 to 1. Much
higher than 4, a large number of the majority carriers will not
be effectively coupled. If the ratio is too close to 1, the system
tends to become an excitonic insulator. Thirdly, the cuprate
superconductors are strongly two-dimensional which is benign
to the formation of bound states due to increased confinement
compared to the ordinary three-dimensional metals. Finally,
to effect strong electron–hole coupling, the group velocity
vg = ∇k Ek of the relevant carriers need to be close to one
another, or near zero. The flat saddle point at (0, π) is an ideal
harbor for such a coupling.

Therefore the FS topological crossover in SC cuprates
appears to significantly amplify the superconducting coupling.
This also indicates that a non-traditional pairing mechanism is
at play in high-Tc superconductors, and the mechanism is likely
exciton-like.

4. Scattering mechanism

All this experimental evidence suggests a promising combina-
tion of 1/τ ∝ T 2 and n(T ) ∝ T in explaining the peculiar
transport in cuprates. Then what is the scattering mechanism

behind the T 2 rate? It is likely caused by electron–electron
and electron–hole scattering. A fermion–fermion scattering re-
sults in a T 2 rate basically because of the phase space restraints
from the Pauli principle. In two dimensions (2D), some nest-
ing effect might be prominent but it has been shown that e–e
scattering still basically follows a T 2 law [58].

Here we have, however, a variable n(T ), which might
make us suspect a rate 1/τ increasing faster than T 2.
Intuitively the electrons (holes) are getting more crowded with
increasing T . So we want to use a very simple argument based
on power analysis to show that this worry is not needed.

Treating the scattering process using the Fermi golden
rule, the probability per unit time that an electron in k will be
scattered into another k′ is given by

w(k′, k) = 2π

h̄
〈k′|H ′|k〉2δ(εk − εk′), (10)

where |k〉 = eikr up to a normalization constant and H ′ =
e−αr/r , the screened Coulomb potential. In two dimensions
(2D)

〈k′|H ′|k〉 =
∫

ei(k−k′)re−αr

r
d2r (11)

=
∫

eiqre−αr

r
r dr dθ, (12)

where q = k − k′ and thus q = 2k sin(θ/2) with θ the angle
between k and k′.

Notice that, in 2D, eiqr can be expanded by Bessel
functions of the first kind. Then

eiqr = eiqr cos θ (13)

=
∞∑

m=−∞
Jm(qr)imeimθ . (14)

Integrate the above first over θ and eimθ averages to 0
except when m = 0. Thus

〈k′|H ′|k〉 = 2π

∫ ∞

0
J0(qr)e−αr dr = 2π

(q2 + α2)
1
2

. (15)

When the screening is not strong, which should be the
case for cuprates6 we see that 〈k′|H ′|k〉2 ≈ 4π2/q2 =
π2/ sin2(θ/2)k2, where k will be taken as kF because effective
scatterings only occur near the FS. To be illustrative, we only
consider an isotropic case (i.e. the FS is a circle), then the
Fermi wavevector kF = [2πn(T )]1/2 in 2D where n(T ) is
taken as the area density of carriers. Without considering
the complication from umklapp scattering, we conclude that
the transition rate from k to k′, w(k′, k) is ∝1/T because
k2 = k2

F ∝ n(T ) and n(T ) ∝ T . Now let us look at the
phase space available for scattering. The perimeter of the
FS is 2πkF ∝ [n(T )]1/2 ∝ T 1/2 and thus the number of
states available for scattering to and from is proportional to
the product of the perimeter 2πkF and the thermal excitation
width ∼kBT with kB Boltzmann’s constant, in other words
proportional to T 3/2. Applied to both initial and final states
this gives us a factor of T 3 from the phase space restriction.

6 The strong correlation nature of cuprates likely suggests a weak screening.
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Combined with a transition probability w(k′, k) ∝ T −1, as
already seen, it results in a relaxation rate 1/τ ∝ T 2, which
is exactly what we find in experiments. Complications from
screening, umklapp process and so on, will be shown in a
separate publication but the result is essentially the same.

A similar argument applies to the e–h process where the
fermion nature of e and h on their own part gives the same
phase restriction we mentioned before and thus the same T
dependence for charge transport.

This e–h liquid is perhaps near a Fermi liquid (FL) above
the pseudogap temperature T ∗. Nonetheless it is not so under
T ∗ because the presence of exciton-like states formed by e
and h is significant at low T . These exciton-like pairs are
stable against recombination because of the semimetallic band
structure, unlike those of the fast-recombining type found
in semiconductors. These bound states, as a discontinuous
change from the free particle motions, manifest the loss of
one-to-one correspondence from the states of the free Fermi
gas. This offers an explanation for various non-Fermi-liquid
phenomena of cuprates. The importance of discontinuities
and non-perturbative approaches in high-Tc superconductivity
were very well summarized in [59]. Some 30 years ago,
Mott emphasized the interacting nature of such exciton-like
states [60]. Kohn [61] and Halperin and Rice [62] pointed out
the possible anomalies, like excitonic insulator, CDW, SDW,
antiferromagnetic correlation and phase separation, in such a
strongly interacting e–h system, which reminds us of many of
the correlation phenomena and possibly the stripe phase found
in high-Tc materials.

Although Jérome et al [63] and Halperin and Rice [62]
also argued that the ground state of the excitonic state is an
insulator, not to mention superconductivity, their conclusion
is only true for a system with equal numbers of electrons
and holes. If the densities of e and h are not equal, the
ground state should be a conductor at least. The possibility
of high-Tc superconductivity in systems similar to this was
studied by Allender et al [46] and Ginzburg [47]. All these
suggest a possible connection of high-Tc superconductivity to
the exciton-like states of an electron–hole liquid. The authors
believe in the value of pairing mechanism studies along the
exciton-like model. A preliminary pairing model has been
developed, based on quasi-bound states of three electrons and
one hole (or alternatively 3h + 1e) [64].

5. Conclusion

This paper is an extension of the authors’ previous work as
a preprint [65]. At that time, neither electronic structure
calculation nor ARPES was sophisticated enough to give
precision topology of the Fermi surface. More importantly,
only a few researchers challenged the ‘conventional wisdom’
of the hole-only FS for p-type cuprates. It is worth
noting that a large portion of the predictions made in
papers [25, 23, 26, 27] and preprints [24, 65] as regards
electron-like carriers coexisting with holes is now verified by
experiments. At that time the origin of e-like FS was far
from clear, and the models were very phenomenological. Still,
with a bit of physics insight and careful logical reasoning, we

arrived at a conjecture nowadays proved by the ARPES and a
number of other experiments.

In summary, we have demonstrated that the puzzling
two rates in the normal state can be understood in terms
of an effective carrier (quasiparticle) density n almost linear
in temperature T and a single relaxation rate nearly ∝T 2.
This explanation conforms to many experiments although there
still exist some problems not fully answered. The variable
quasiparticle number has its origin in the midgap localized
states, manifested in a number of experiments, for example
mid-infrared absorption. Thermal excitation liberates some of
the localized carriers, resulting in an n increase with T . We
then reason that such a localized state is a logical consequence
if the Coulomb correlation between electrons and holes is taken
into account, which does not come as a surprise due to the
strong correlation in cuprates. The e–h-like quasiparticles
form exciton-like bound states, and are therefore localized in
their relative coordinates. Semimetal-like electronic structure
ensures their stability against recombination. Localized states
of the exciton type are only localized in its response to
an electric field, therefore hidden where electric response is
essential, for example, conductivity and IR conductance. Still,
these states have a translational degree of freedom as a neutral
particle, therefore contributing to experiments like specific heat
and thermal conductance. The exciton-like binding energy, of
the order of 0.02 eV, makes the midgap states very close to
the Fermi level, further evidence supporting the explanation.
Electronic structure calculation was also carried out to explore
the 3D topology of the Fermi surface, explaining why there
exist e-like carriers in a p-type material, which is also seen in
ARPES. The scattering between electrons and holes gives rise
to a T 2 dependence in scattering rate, further strengthening the
idea of a single rate.
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